1. Constructed Action of Highly Animate Referents: Evidence from American, British and Mexican Sign Languages

2. Special Session Non-Speech Modalities

3, 4, 5, 6. Authors, Affiliations, Emails, Phone Numbers:

David Quinto-Pozos
University of Illinois Champaign Urbana
davidqp@illinois.edu
217-369-2309

Kearsy Cormier
University College London
k.cormier@ucl.ac.uk
+44 (0)20 7679 8674

Claire Ramsey
University of California San Diego
cramsey@ucsd.edu
858 822 3960

7. pragmatics, morphology, syntax
Constructed Action (hereafter CA), or a signer’s use of “…body, head, and eye gaze to report the actions, thoughts, words, and expressions of characters within the discourse” (Metzger, 1995) has been described for discourse in ASL (Metzger, 1995, Liddell & Metzger, 1998) and other sign languages (e.g., Aarons & Morgan, 2003, Perniss, 2007). Our work contributes to this literature by presenting a cross-linguistic analysis of signed renditions of video clips characterized as highly animate, across three sign languages: American Sign Language (ASL), British Sign Language (BSL), and Mexican Sign Language (LSM). We consider the occurrence of CA, variation within and across the three languages, and interactions between CA and one CA component, classifier handshapes (hereafter CL). In addition, we consider methodological issues in gathering and analyzing CA data.

Data were generated by a CA production task administered to native signers. Participants were asked to provide signed portrayals of 20 elicitation videos. Animacy of main objects in the videos was established through a rating task completed by hearing non-signers, to eliminate possible influence from knowledge of a sign language. Here we analyze renditions signed in response to the four videos which were rated as highest in animacy. For each video, we have data from five native signers from each of the three sign languages, totaling 15 productions per clip. Instances of CA in each production were coded for CA of the eyes, head, torso, and arms/hands, various uses of the mouth (Dudis, 2004), and we also documented productions of entity classifier constructions (CL).

Results show that the body parts coded as CA articulators for our high-animacy data are represented across all three languages, and some videos elicit similar CA for some body parts from nearly all the signers. However, variation occurs within each language, as well as across the three languages. Decomposing CA into articulators provides a way to separately examine the use of CA articulators (the head, eyes, body, mouth and arms/hands) and CL articulators (the hands). Systematically examining each potential articulator in the renditions of highly animate videos allows us to objectively examine degree of CA (i.e. “strong” vs. “subtle” CA), and also interactions of animacy with CA and CLs, specifically where CLs occur as part of CA and where CA does not include CLs. (See Quinto-Pozos, 2007, for a discussion of CA & CL interactions).

Our results also raise methodological issues. First, across languages, some videos elicit CLs while others do not. We want to understand which features of the videos target the production of a CL as part of CA. Second, CA is a challenging communicative device, difficult to examine because the signed constructions are complex. Accordingly, well-designed coding schemes are needed to capture this complexity and decompose it for analysis. We discuss the grounding and development of our coding scheme.

The cross-linguistic descriptive work we report here is important for fully understanding narration of location and motion, features that vary within and between languages, and the articulators used in CA and their relationship with CLs. There are important unanswered questions about CA, including ongoing discussions about the status of CA as grammatical vs gestural device (or a combination of both), and questions about CA and obligatoriness. However, before we can address these challenging issues in sign language research, clear descriptions, especially systematic cross-linguistic accounts of CA, are required.
References

